

Introduction to FCEV Technology

PJ Callahan Lead Engineering Consultant pj@cte.tv

Benefits of H2 for Alaska

Minimal On-Site Electrical Infrastructure Required

• H2 station requires less power/energy than chargers at a fueling location

Grid Resilience

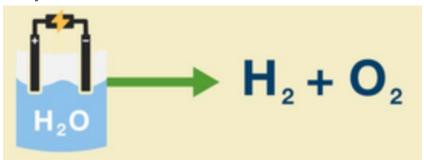
• Liquid hydrogen deliveries can continue in grid-down scenario

Reduced Impact of Cold Weather on Efficiency

• Fuel Cell Waste Heat for Cabin Heating

Improved Range/Payload for Heavy Duty Applications

• Clearer pathway to weight reductions/range improvements

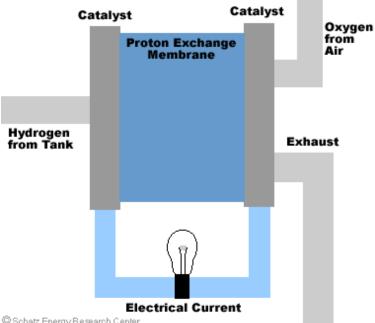

Hydrogen Overview

H2 is an Energy Carrier

- Odorless
- Colorless
- Non-toxic
- Lighter than air
- Disperses quickly
- Can be transported as a compressed gas or cryogenic liquid

- Most abundant element in the universe
- On Earth, hydrogen is rarely found in its pure form
- Hydrogen is isolated in many different ways

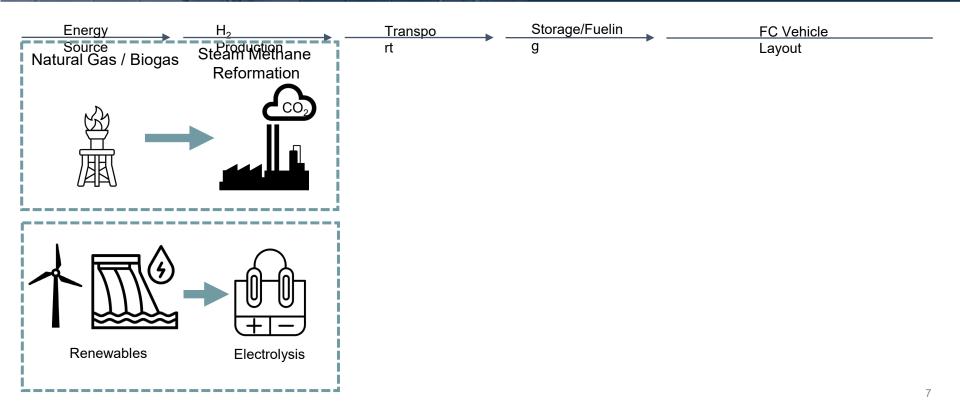
Alberta Energy Regulator. (2021). Hydrogen. Retrieved from https://www.aer.ca/providing-information/data-and-reports/statisticalreports/st98/emerging-resources/hydrogen


H2 is an Energy Carrier

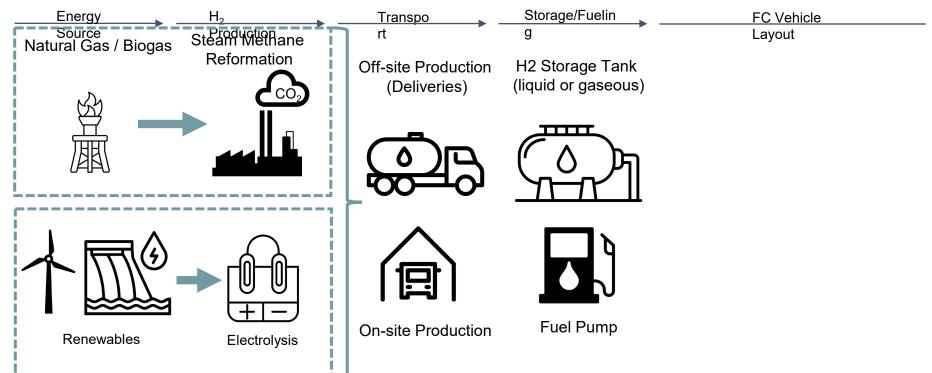
cte

	Hydrogen	Natural Gas	Gasoline
Color	No	No	Yes
Toxicity	None	Some	High
Odor	Odorless	Mercaptan	Yes
Buoyancy Relative to Air	14X Lighter	2X Lighter	3.75X Heavier
Energy by Weight	2.8X > Gasoline	~1.2X > Gasoline	43 MJ/kg
Energy by	4X <	1.5X <	120
Volume	Gasoline	Gasoline	MJ/Gallon

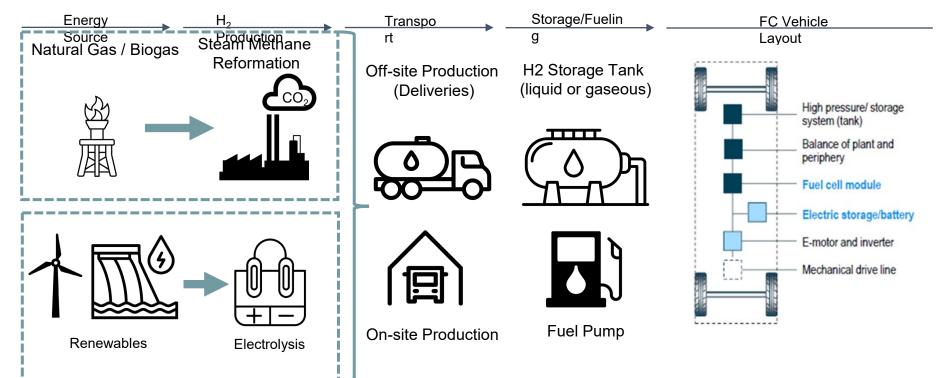
Fuel Cells



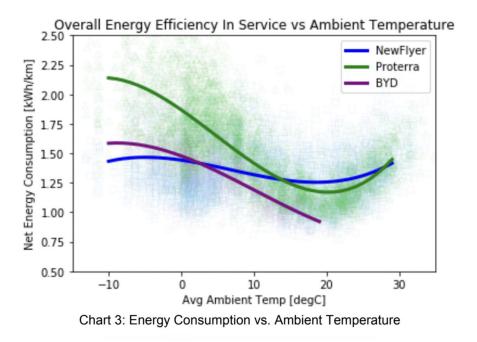
- Uses fuel. but NO combustion
- NOT a battery
- A chemical reaction between hydrogen and oxygen
- Emits only water vapor and heat

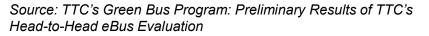


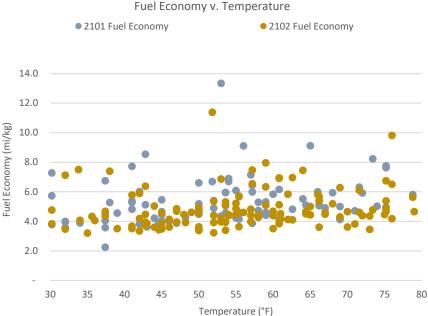
Hydrogen Life Cycle



Hydrogen Life Cycle




Hydrogen Life Cycle



Cold Weather Efficiency

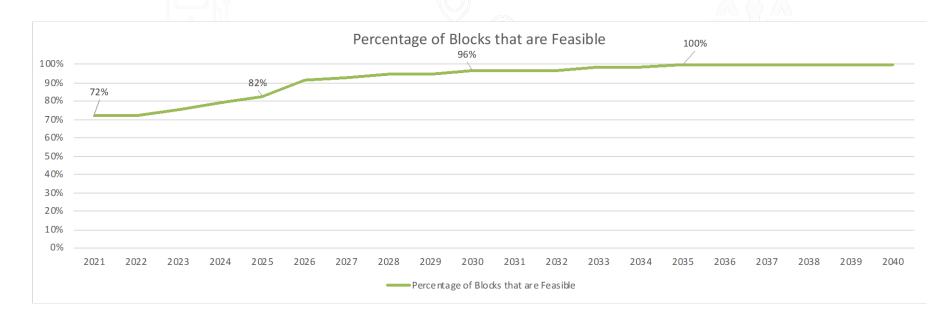
Source: Champaign-Urbana MTD, 60-foot FCEB fuel economy report

BEV and FCEV Summary

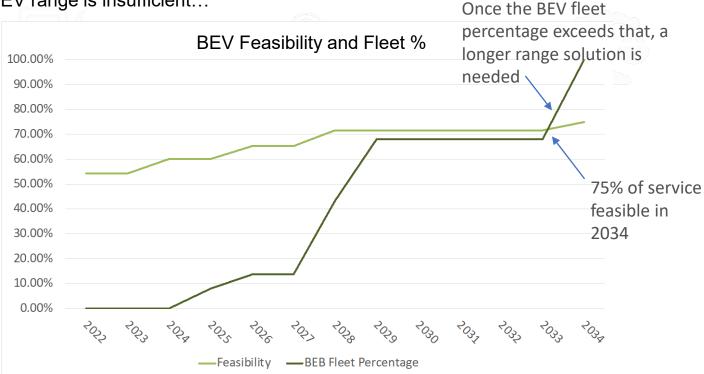
Battery Electric Vehicles (BEVs)

- On-board Energy Storage/Range Limitations
- Fueling time longer than ICE vehicle
- Greater potential for lower cost fuel
- Lower vehicle capital costs than FCEV
- Greater Market Maturity than FCEV

Fuel Cell Electric Vehicles (FCEVs)


- Comparably greater range than BEV
- Fueling time comparable to ICE vehicle
- Fuel cost significantly higher than BEV
- Vehicle cost significantly higher than BEV
- Limited purchasing options (40' only)

Fleet Transition Planning


It's important to analyze feasibility and costs of a fleet transition to determine the best fit

Fleet Transition Planning

When BEV range is insufficient...

Fleet Transition Planning

- How are we going to meet the service demands?
- Some transition scenarios that will help fill that range gap in order to reach 100% ZEV

Real World Applications

DOE National Blueprint

Technology solutions for travel modes to reach a net-zero economy in 2050

1 icon represents limited long-term opportunity 2 icons represents large long-term opportunity 3 icons represents greatest long-term opportunity	BATTERY/ELECTRIC	(©) HYDROGEN	SUSTAINABLE LIQUID FUELS
Light Duty Vehicles (49%)*		-	TBD
Medium, Short-Haul Heavy Trucks & Buses (~14%)		۲	đ
Long-Haul Heavy Trucks (~7%)		•••	te te
Off-road (10%)		۲	I
Rail (2%)		•	5
Maritime (3%)		()	t t t
Aviation (11%)		۲	te te te
Pipelines (4%)		TBD	TBD
Additional Opportunities	Stationary battery use Grid support (managed EV charging)	 Heavy industries Grid support Feedstock for chemicals and fuels 	Decarbonize plastics/chemicals Bio-products
RD&D Priorities	 National battery strategy Charging infrastructure Grid integration Battery recycling 	 Electrolyzer costs Fuel cell durability and cost Clean hydrogen infrastructure 	 Multiple cost-effective drop-in sustainable fuels Reduce ethanol carbon intensity Bioenergy scale-up

Source: The U.S. National Blueprint for Transportation Decarbonization: A Joint Strategy to Transform Transportation 16

* All emissions shares are for 2019

⁺ Includes hydrogen for ammonia and methanol

Real World Applications

- Class 6 UPS Trucks
- Class 8 Drayage Trucks
- Cargo Top Loader
- 40' and 60' Transit Buses
- HD and LD H₂ Stations

Delivery Vans

To achieve ~97% of delivery routes, UPS needs its vehicles to operate for 125 miles. To meet that requirement, two different project teams took two different approaches:

Fuel Cell Hybrid Electric Delivery Van

- o 15 vehicle deployment in Ontario, CA
- o Retrofitted 2006 Navistar chassis
- o 10kg at 350bar storage
- o 32 kW fuel cell engine
- Optimized weight reductions and power delivery controls based on prototype vehicle deployed in real service

Next Generation Delivery Van

- 4 vehicle deployment in West Sacramento, CA
- Upfitted 2019 F-59 chassis
- 15kg at 700bar storage
- 85 kW fuel cell engine
- Sized based on operational profile data across US

NorCal ZERO

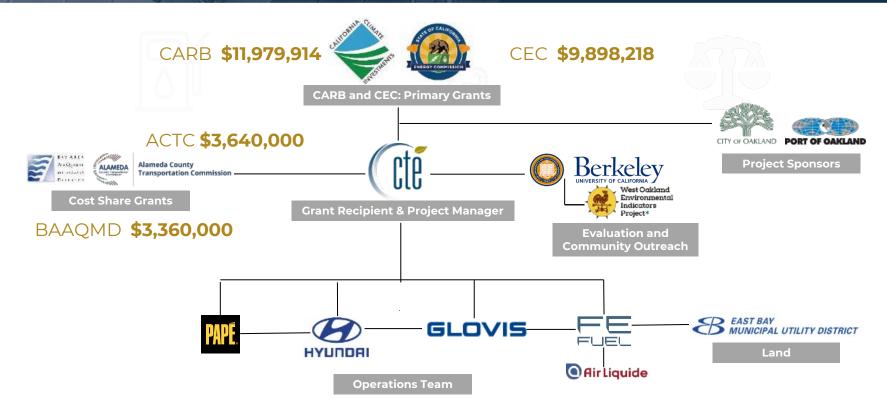
Zero-Emission Regional and Drayage Operations with Fuel Cell Electric Trucks

- Project Location: Port of Oakland
- 30 Hyundai XCIENT FCETs
- 6 Year Operational Period

- Largest deployment of FCETs in North America
- Fueling Station Location: 2450 Engineer Rd., Oakland, California
- Fueling Station Capabilities: Up to 200 trucks per day

NorCal ZERO Project Goals

- Eliminate Tailpipe Emissions
- Demonstrate Commercial Viability to Fleet Operators: Range up to 500 miles
- Expand Hydrogen Refueling Network: 10- to 20-minute 60 kg fills; Up to 200 trucks with collocated light-duty fueling
- **Provide Local Workforce Benefits:** Service and Repair Facility in San Leandro



California Fuel Cell Partnership. (2021, April 6). California Fuel Cell Partnership Envisions 70,000 Heavy Duty Fuel Cell Electric Trucks Supported by 200 Hydrogen Stations. Retrieved from <u>https://h2fcp.org/blog/california-fuel-cell-partnership-envisions-70000-heavy-duty-fuel-cell-electric-truckssupported</u>

20

NorCal ZERO Project Team LAUNCH ALASKA

